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GENERALIZED RHEOLOGICAL MODEL OF CAVITATING

CONDENSED MEDIA

UDC 532.135:532.52;539.374S. V. Stebnovskii

It is shown that development of cavitation in solid-plastic, liquid-plastic, and liquid media can be
modeled using a rheologically equivalent, cavitating viscoelastoplastic body containing microcavities
in the initial state. An energy inequality is derived that defines the loading conditions for a body with
microcavities under which the body enters a cavitating state, i.e., the concentration of microcavities
increases by more than an order of magnitude. A generalized rheological equation of state is for-
mulated; analytical dependences of the modulus of volume elasticity, volumetric (second) viscosity,
and the relaxation time of tensile stresses on the volume concentration of cavitational hollows in the
model viscoelastoplastic body are derived.

Numerous processes studied by solid mechanics are accompanied by the growth of microcavities in the
tensile-stress field (i.e., micropores in solids and microbubbles in liquids). In liquid media, this process can result in
unlimited bubble growth from cavitation nuclei, transition of the medium into a foamy structure, and subsequent
disintegration into fragments (cavitation damage). In the case of tensile deformation of solids, the growth of
micropores and their coalescence are important components of the brittle fracture mechanism. In addition, there
are intermediate media between liquid and solid materials in the rheological row: in the undisturbed state, they
show an insignificant limit of shear elasticity, while under loading they enter the liquid state, losing their structural
viscosity. (Among such media are gels, jellies, asphalts, concretes, paints, etc.) With allowance for the aforesaid,
the cavitation development process for all these media should be described within the framework of a general model
medium that possesses the properties of both rheonomous and scleronomous bodies. We assume that a cavitating
medium is a medium in which the volume concentration of microcavities increases by at least an order of magnitude
compared to its initial value.

The objective of the present work is to construct a generalized model of cavitating media. In terms of
theoretical rheology, the media are assumed to be solid-plastic if τ∗/P∞ � 1 (τ∗ is the yield point for the media
under pure shear and P∞ is the atmospheric pressure), liquid-plastic if τ∗ ≈ P∞, and liquid if τ∗/P∞ � 1. Since
microcavity growth in a condensed medium is due to the divergent flow of the medium in the vicinities of pores,
where it is in the liquid or viscoelastic state, the medium should be subjected to volume-tensile stress such that the
shear stresses in the vicinity of pores exceed the yield point. Deformation of this kind is feasible only at the stage
of unloading of a medium containing microcavities after it has been shock-wave loaded.

1. To justify the possibility of constructing a generalized rheological model, we perform a comparative
analysis of the behavior of cavitating media under dynamic loading and determine the features of deformation
processes common for these media. For this purpose, we consider the stress–strain diagrams of condensed media,
placing them in descending order of yield points τ∗ from plastic metals to low-viscosity liquids.

Figure 1a shows uniaxial tension diagrams [1–3] for cylindrical samples of solid-plastic bodies [curve 1 refers
to iron (α-iron), curve 2 to polycrystalline aluminum, and curve 3 to a polymer in a rigid, non-brittle state (below
glass-transition temperature)]. Since these materials have incommensurable values of τ∗, Fig. 1 shows qualitative
dependences σ(ε) (σ is the tensile stress and ε is the total strain of the sample). In the case of iron, which has
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Fig. 1

Fig. 2

the largest value of τ∗ among the given materials, the diagram has a so-called “plasticity tooth.” That is, when
the tensile stress reaches a certain value of aI

1 (depending on the strain rate), it starts decreasing together with the
continued rise in strain ε. The yield point τ∗ of polycrystalline aluminum is much lower than that of iron. The
dependence σ(ε) for this material is similar to the dependence for an ideal plastic body: if σ > aII

1 , the elastic
deformation of the medium changes into yielding flow with strain increasing beyond bound at σ = const. Polymers
have qualitatively similar dependences σ(ε) (curve 3) but lower ultimate stress aIII

1 .
Figure 1b gives shear strain diagrams for liquid-plastic media. Curve 1 refers to 2% gel (aluminum naphthen-

ate solution in petrolatum) [4] and curve 2 refers to dry foam (volume concentration of hexagonal foam cells in water
α ≈ 0.97) [5]. In both cases, the medium is deformed as Bingham’s body, i.e., initially, elastic deformation occurs
and then, after σ exceeds the threshold value (aIV

1 and aV
1 , respectively), the medium losses structural viscosity

and starts flowing. Figure 1c [6] shows a tensile stress-strain diagram σ(ε) for an elastomer (linear polymer), for
example, rubber. This material is capable of large (up to 1000%) reversible hyperelastic strains.

According to current concepts, Newtonian liquids do not possess shear elasticity at Deborah numbers De =
T0/∆t∗ � 1 (T0 is the time of shear-stress relaxation in the medium and ∆t∗ is the characteristic time of stress).
However, numerous experiments (see, for example, [7, 8]) give indirect evidence that liquids posses insignificant shear
elasticity. Finally, Apakashev and Pavlov [9] showed experimentally that under very small strain, water behaves as
a medium with an insignificant yield point and shear modulus: τ∗ ' G0 = 10−6 Pa. It was also established that
for glycerin, τ∗ ' G0 = 1 Pa at a temperature of 15◦C (G0 is the adiabatic shear modulus). Thus, homogeneous
Newtonian liquids in their rheological properties can be nominally identified with Bingham’s bodies, which are
characterized by a very low yield point τ∗. If a liquid sample containing cavitation nuclei is subjected to volume
tension, the dependence σV (εV ) takes the form shown in Fig. 2a [10], where σV and εV are the volume tensile
stress and strain, respectively. If ∆t∗ < T0, the increase in σV to the maximum value a1 occurs in the elastic
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Fig. 3

regime [T0 = ζ0(K∞ − K0)−1, where ζ0 is the volume viscosity and K∞ and K0 are the dynamic and adiabatic
moduli of volume elasticity of the pure liquid, respectively]. The portion a1a2 of the curve in Fig. 2 corresponds
to partial relaxation of σV due to restructuring of the liquid at the molecular level, i.e., without changes volume
changes. Next, the portion a2a3 corresponds to the relaxation of σV due to unlimited bubble growth from cavitation
nuclei with subsequent formation of a foamy cell structure. The next portion a3a4 illustrates the volume tension
(in the inertial regime) of the foam up to a certain critical strain εV∗ that corresponds to the onset of capillary
disintegration of the medium into fragments. At this stage, the foamy medium acquires volume elasticity, which is
due to atmospheric back pressure (the capability of the medium for reverting to its original state along the trajectory
a′O after relaxation of the stress σV ) and the shear elasticity of the liquid films forming foamy cells [the elastic
(surface) energy of the films grows with increase in εV ]. Hence, the foamy-like medium formed during development
of unlimited cavitation in a Newtonian liquid possesses both volume and shear elasticity. If the shear stresses τ
exceed τ∗ during deformation, the medium enters the yield state [5, 11].

From the aforesaid it follows that all solid-plastic, liquid-plastic, and liquid media possess both shear elasticity
and yielding. In transition from plastic metals to low-viscosity liquids, τ∗ changes by a factor of 1017–1018. Since all
real condensed media possess shear viscosity µ, the generalized macrorheological model of cavitating media can be
developed with allowance for the properties of an elastoviscoplastic body (EVPB) that contains cavitational nuclei
(microcavities) in its original state. It must be considered that cavitation is a property of media that exhibit yield
properties constantly or under certain loading conditions, and this allows the cavities to extend in the tensile-stress
field.

2. In a linear approximation, a three-dimensional strain of a continuous medium can always be decomposed
into a volumetric strain and a shear strain. Taking into account that volumetric strain is always accompanied by
shear, these constituents of the mechanical model of EVPB are functionally joined with an auxiliary unit in the
present work (Fig. 3). In Fig. 3a, the mechanical block A corresponds to volume tension of the body, the block B to
simple shear, and the block C is an auxiliary unit that consists of a bridge comprising four spring elements k1, . . . , k4.
On one of the diagonals of the bridge there is rod 2, which is able to freely glide inside sleeves 1 (connected to the
spring elements with hinges). Gear 3 is rigidly connected to the rod. When the gear is rotated (together with the
rod), the mechanical block B is set in tension through rack-and-gear drive 4. The rigidity of the bridge springs
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satisfies the condition k1 = k3 > k2 = k4. Thus, if tensile force σ is applied at the junction point of the bridge 5
(Fig. 3b) there is extension of the mechanical block A (connected to the block B at point 6), which corresponds to
volume deformation of the EVPB. Because of the asymmetry of the bridge, this is accompanied by extension of the
block B, which corresponds to shear deformation of the EVPB.

The mechanical block A coincides with the mechanical model of volume deformation of Newtonian liquids
described in [10, 13] since the qualitative character of volume deformation is identical for all condensed media [12]
and can be determined only by the two rheological parameters: the modulus of volume elasticity K and the second
(volumetric) viscosity ζ, which generally depend on the volume concentration of cavitational hollows α. The block
A consists of elastic elements K1 = K∞ − K0, K2 = K0 − Ka, and K3 = Ka(α) (Ka is the modulus of volume
elasticity of a body containing cavitational hollows of concentration α) and viscous elements ζ0 and ζ1(α), which
are the volume viscosity of the homogeneous EVPB and the volume viscosity of the EVPB containing cavitational
hollows, respectively.

The block B consists of a series of mechanical units corresponding to Shvedov’s and Kelvin–Voigt’s bodies.
The first unit comprises the elastic element Ga(α), which corresponds to the shear elasticity of the EVPB, the
elastic element G1, and the piston µ1, which corresponds to the shear viscosity of the medium, so that

µ1 =


µ0 for α = 0,

µ∗ for 0 < α 6 α∗,

µ∗∗ for α > α∗.

Here α∗ ' 0.74–0.76 is the volume concentration of cavities for their limiting packing (feasible only in liquid media),
µ0 is the shear viscosity of the homogeneous medium, µ∗ is the effective shear viscosity of the gaseous suspension
(medium containing cavitational hollows), and µ∗∗ is the structural viscosity of a foamy cell system, feasible only
for unlimited cavitation of low-viscosity liquids or liquid-disperse media and gels having a low-viscosity liquid as a
matrix [14, 15]. The Saint-Venant (SV) element is connected in parallel to the elements µ1 and G1 and blocks them
in various modes. The SV element corresponds to the plastic viscosity of the medium η, which varies as

η(τ, α) =



∞ for τ < τ∗, α < α∗,

η∗ for τ = τ∗, α < α∗,

0 for τ > τ∗, α < α∗,

∞ for τ∗ < τ < τ∗∗, α > α∗,

η∗∗ for τ = τ∗∗, α > α∗,

0 for τ > τ∗∗, α > α∗.

Here τ∗ is the yield point of the homogeneous EVPB and τ∗∗ is the yield point of the foamy cellular structure into
which the EVPB evolves at α > α∗. As G1 → 0, the mechanical unit simulating Shvedov’s body (for example,
plastic gels) degenerates into the unit corresponding to Bingham’s body. At α < α∗, the Kelvin–Voigt unit µ2|G2

connected in series with the mechanical model of a Shvedov’s body corresponds to the viscoelastic properties of
cavitational hollows, and at α > α∗ it corresponds to the properties of foamy cells. For polydisperse cavitational
hollows, the generalized Kelvin–Voigt units includes the entire spectrum of elements µi2|Gi2 corresponding to the
spectrum of typical cavity sizes {di}.

The block B operates as follows. Tensile force σ applied to the point 5 of the block B gives rise to “volume”
deformation of the block A due to the applied tensile force σV and “shear” deformation of the block B due to the
force τ (corresponding to pure shear stress). In this case, the mode of operation of the block B depends on the
value of α and the ratio between τ and τ∗. The latter can take different values from 10−6 Pa for water, 1 Pa for
glycerin, and up to 1010 Pa for steel.

If τ < τ∗, then η = ∞, i.e., the SV element is closed, thus blocking the piston µ1 with the spring G1, the
medium behaves as an elastic solid body containing viscoelastic disperse elements (pores), which are equivalent to
the generalized Kelvin–Voigt body µ2|G2. Under these loading conditions, the medium is either a scleronomous
gaseous suspension at α < α∗ or a cellular structure with a solid elastic matrix at α > α∗.

If τ > τ∗, then η = 0, i.e, the SV element is opened, the piston µ1 starts moving, and the medium acquires
viscoplastic properties. (If G1 6= 0, this process at a relevant strain rate is accompanied by accumulation of elastic
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Fig. 4

energy in the element G1.) In this case, if α → 0, we have a classical Maxwell body, whose behavior depends on
the relation of the parameters Ga + G1 and µ0, and the Deborah number De = µ0[(Ga + G1)∆t∗]−1. When the
values of µ0 are very large, we have solid-plastic bodies. If µ0 6 102 Pa · sec, we have liquids [Newtonian liquids at
µ0 = const and non-Newtonian ones at µ0 = µ0(ε̇τ ), where ε̇τ is the shear strain rate]. In the last case at De� 1,
the piston µ1 has no time to move; therefore, the shear strain is determined only by the elastic element Ga + G1,
i.e., the liquid behaves as Hooke’s body. At De 6 1, the behavior of the medium depends on the shear viscosity µ1

and corresponds to a plastic or liquid body.
With increase in α, the medium acquires the properties of a gaseous suspension, while at α > α∗ (which is

possible only in the case of liquid low-viscosity matrices [14–16]), the bubbles are consolidating and the medium is
transformed to a rigid foamy framework. In this case, if τ < τ∗∗, then η =∞, i.e., the SV element is closed and the
medium has the properties of a viscoelastic body. If τ > τ∗∗, the SV element opens (η = 0), and in the medium there
is plastic deformation of the cellular structure. The plastic deformation properties depend on the capillary number
Ca [11]. We note that all the aforesaid about gaseous suspensions with a liquid matrix and foamy structures is also
valid for foamed metals and other scleronomous media at both α < α∗ and α > α∗ (if this structure is feasible).
However, since the present paper deals only with development of cavitation in condensed media, we further consider
the cases where α � α∗ and the volume average tensile stress in the medium is located in a zone bounded by the
yield surface.

Thus, the analysis performed demonstrates that the constructed generalized mechanical model of an EVPB
(see Fig. 3) adequately describes all principal materials capable of cavitating.

3. Let us analyze conditions for the growth of cavitational hollows in the modeled EVPB. We assume
that the modeled undisturbed EVPB with density ρ0 contains monodisperse microcavities of initial radius R0 with
number density n, uniformly distributed over volume V 0 (Fig. 4). Then, by analogy with [13], we split the unit
volume of the medium into n cubic cells, so that the center of each cell contains a spherical cavity of radius R0 and
the cell size is l × l × l (l = n−1/3). The surface tension on the boundary of the cavity is γ; generally, P1 is the
pressure inside the cavity (if the medium is a liquid, P1 = Pv + Pg, where Pv is the vapor pressure and Pg is the
gas pressure), and R0 and n satisfy the condition R0 � n−1/3.

From analysis of the growth conditions obtained in [13, 16] for pores in scleronomous media and bubbles in
liquids, it follows that the growth of cavitational hollows in condensed media depends on their strength properties,
i.e., parameter τ∗, viscosity µ1, surface tension γ, and atmospheric back pressure P∞. The parameter τ∗ is dominant
for liquid-plastic media, µ1, for high-viscosity liquids and scleronomous media deformed in the plastic yield regime,
and γ and P∞, for low-viscosity liquids. From the results obtained in [13], it follows that if a negative pressure
P < 0 is applied to an EVPB containing microcavities of initial radius R0 (Fig. 4), so that the Tresca plasticity
condition, expressed in this case by the inequality

τ =
3|P̂ |
4r̄3

> τ∗ (1)
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is valid in the vicinity of a microcavity, the dynamic equation takes the form

bb̈+
3− 4β0

2(1− β0)
ḃ2 + h

ḃ

b
= Qh(1− s). (2)

Here b = RR−1
0 (R0 and R are the initial and current radii, respectively),

h =
4µ1

ρR2
0(1− β0)

, Q =
P̂

4µ1
, s = D

[
ln β−1 +

1
3

(
1− a3

R3
c

)]
= D

(
ln β−1 +

1
3

(1− αβ−3)
)
,

(3)
D = 4τ∗|P̂ |−1 ' 2Y∗|P̂ |−1, β =

R

a
=
[
4τ∗(3|P̂ | )−1

]1/3∣∣∣
P̂=const

= β0 =
R0

a0
,

a is the radius of the plasticity zone in the vicinity of a microcavity, where condition (1) is satisfied, Y∗ is the
tensile yield point, R3R−3

c = α (Rc = 0.5l = 0.5n−1/3 is the radius of the circle inscribed to the cell), and
P̂ = −P + P1 − P∞ − 2γR0b

−1 (P < 0 for extension and P > 0 for compression).
It follows from (2) that the boundary of the cavity is in equilibrium (ḃ = b̈ = 0) if the condi-

tion Qh(1 − s) = 0 is satisfied, which, with allowance for (3), can be written as P̂ − 4τ∗(ln β−3 + 1 −
αβ−3)/3 = 0. To make this condition valid for the collapse (compression) regime of a cavity, we write it as

P̂ = (−1)m+14τ∗(ln β−3 + 1− αβ−3)/3, (4)

where m = 1 corresponds to extension of the medium and m = 2 to compression. If P̂ = −P , this condition agrees
with the well-known Hencky’s formula from solid-state mechanics, which defines the equilibrium condition for a
pore wall in a spherical elastoplastic body. According to (4), when the plasticity zone is beginning to form on the
cavity boundary and a = R, the pressure corresponding to the plastic threshold has the form

P̂ 0 = (−1)m+14τ∗(1− α)/3. (5)

According to (4), when a ' Rc = 0.5n−1/3, the pressure corresponding to the moment when the outer radius of the
plastic layer a reaches the cell boundary is given by

P̂ ∗ = (−1)m+14τ∗ ln (α−1)/3. (6)

It is worth noting that for P̂ → P , the problem of pore dynamics in solid materials considered in [17] is
relevant. At τ∗ → 0, Eq. (2) reduces to the equation of motion for a spherical bubble wall in a viscous liquid
and Eq. (4) reduces to the equilibrium condition for a bubble wall [18]. Equations (5) and (6) at P̂ = P derived
from Hencky’s formula were used in papers [19–21], dealing with mathematical modeling of dynamic processes in
porous materials. Kiselev [19] derived an analytical dependence for the modulus of volume elasticity of a material
on porosity and loading pressure, which is of interest for the present work.

According to the experimental data of [18, 22], the initial volume concentration of microcavitites α0 in
liquid and solid-plastic media lies in the range of 10−12–10−7. Since the problem under study concerns cavitation
development from initial microcavities, i.e., the growth of cavities to values equal to at least α ' 10α0, we can
restrict ourselves to cavity radii of R < 10R0 and, hence, the condition a3/R3

c � 1. With allowance for this, when
deriving the conditions of growth to values of b∗ ' 10, it is assumed that s = D(ln β−1 + 1/3) ' 4τ∗(ln β−3 + 1)/3.

To determine the range of negative pressures in which the medium is cavitating (i.e., αmax > 10α0 and
b > b∗ = 3

√
10), the condition for cavity growth in an EVPB to specified size was derived by analogy with the

condition for pore growth in solid-plastic media [13]:( 1
3K

+
1
G

)
P̃ 2
[ b3∗
β3

0

− 1 +
(1 + ξ)2

2

(
1− β3

0

b3∗

)]
> 4τ∗(b3∗ − 1)

(
ln β−1

0 +
1
3

)
+ 2P∞(b3∗ − 1) +

6γ
R0

(b2∗ − 1) + 3ρR2
0[(1− β0)b3∗ḃ

2
∗ − β0J1] + 24µ1J2. (7)

Here K = Ka, G = Ga, P̃ = |P |−P∞, ξ = [P1−2γ(R0b)−1]P̃−1, J1 =

t∗∫
0

bḃ3 dt, and J2 =

t∗∫
0

bḃ2 dt. For solid-plastic

media [13], we have
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J1 = Mh2
{

[t̂0 + 5 exp (−t̂0)]M +
1
5

[exp (5 ln b∗)− 1]
}
,

J2 = M2h
[
t̂0 + 2 exp (−t̂0) +

1
3

exp (3 ln b∗)−
11
6
− 1

2
exp (−2t̂0)

]
,

where M = Q(1− s)−1, t is the time elapsed from the moment of negative-pressure loading of the cell, t̂ = ht, and
t̂0 is determined from the equation

(3− 4β0) exp(−t̂0) + (1− 2β0) exp(−t̂0)− 2(1− β0)t̂0 = 2(1− β0)M−1 + 2(2− 3β0). (8)

The generalized inequality (7), unlike the conditions for pore growth in solid-plastic media [13], takes into account
the effect of the parameters P∞ and γ on cavity growth, which is essential for the development of bubble cavitation
in liquids. Thus, if the store of elastic energy in a cell due to the negative pressure applied [the left side of inequality
(7)] exceeds the work on extending the cavity radius to R∗ = 3

√
10 [the right side of inequality (7)], the medium is

considered cavitating at the given loading level.
In solid-plastic media, most of the elastic energy stored in a cell under volume tension is expended in

overcoming structural viscosity (strength forces), i.e., in transition to a plastic state, as is shown in [13]. Hence,
all terms on the right side of (7), except for the first one, can be neglected. Because the left side of this inequality
contains b3∗β

−3
0 � 0.5(1 + ξ)2(1− β3

0b
−3
∗ )− 1, it can be reduced to

Ωb3∗β
−3
0 > 1.5s(b3∗ − 1),

where Ω = P̃E−1 and E = KG(G+ 3K)−1 is Young’s modulus.
In transition to liquid media, τ∗ assumes near-zero values for water, for example, τ∗ ' G = 10−6 Pa.

Therefore, since ḃ∗ = 0 (as b∗ = max{b} by definition) and K � G and β3
0 � 1 for liquids, condition (7) is brought

to the form

P̃ 2

2G

[ b3∗
β3

0

− 1 +
(1 + ξ)2

2

]
+

3
2
ρR2

0β0J1 > P∞(b3∗ − 1) +
3γ
R0

(b2∗ − 1) + 12µ1

t∗∫
0

bḃ2 dt. (9)

The second term on the left side of inequality (9) is always much smaller than the first term, and, therefore,
it can be neglected. The right side of inequality (9) coincides with the right side of the inequality obtained in [16],
which determines the conditions for bubble growth in liquids. The left sides of these inequalities differ because the
condition formulated in [16] is valid for bubble growth under relaxing negative pressure, whereas the generalized
condition for bubble growth (9) is valid for the cases where negative constant pressure is applied to a cell, which is
justified for the problem formulated in the present paper (investigation of the conditions for cavity growth to the
size R = 3

√
10R0 in condensed media).

4. Using the generalized mechanical model constructed (see Fig. 3), we formulate the rheological equation
of volume tension of the modeled EVPB. Since the same mechanical model describes various volume deformations
of all condensed media (block A in Fig. 3a), the general form of the rheological equation that refers to the volume
deformation of the modeled EVPB coincides with the rheological equation for liquids under volume tension [10]

σ̈V +
( 1
T0

+
Z

T1

)
σ̇V +

σV
T0T1

= K∞ε̈V +
(K0

T0
+
ZK0

T1

)
ε̇V +

Ka

T0T1
εV . (10)

Here Z = (K∞ −Ka)(K0 −Ka)−1, T0 = ζ0(K∞ −K0)−1, and T1 = ζ1(K∞ −Ka)−1.
Let us derive the rheological functions Ka(α) and ζ1(α) for two loading ranges: |P̂ | < |P̂ 0| and |P̂ 0| < |P̂ | <

|P̂ ∗|. Here P̂ 0 is derived from (5).
Elastic Deformation in the Range of Negative Pressures |P̂ | < |P̂ 0|. In a cell we distinguish a spherical layer

whose internal boundary is a cavity of radius R0 and whose external boundary is a sphere of radius Rc = 0.5 3
√
n

inscribed in the cubic cell (see Fig. 4). We assume that the pressure P is applied to the external boundary of the
layer. Then, placing the origin of spherical coordinates (r, θ, ϕ) at the center of the cavity and using the solution of
the well-known elastic problem [23], we obtain the following expressions for the elastic-stress tensor components:

εrr = Ã− 2Br−3, εθθ = εϕϕ = Ã+Br−3. (11)

With allowance for this, the formula of volume strain becomes

εV = εii = εrr + εθθ + εϕϕ = 3Ã. (12)
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To determine Ã from (12) and the Hooke’s generalized law εik = (9K)−1δikσll + (2G)−1(σik − 0.333δikσll), we
have σrr = 3K0Ã− 4G0Br

−3, from which, taking into account the boundary conditions σrr = −P1 at r = R0 and
σrr = −P at r = Rc, the expressions for accurately determining the cell volume Vc = (2Rc)3, and the inequality
α|P1| � |P |, we obtain

Ã = (P1R
3
0 − PR3

c)[3K0(R3
c −R3

0)]−1 ' −P [3K0(1− 6α/π)]−1. (13)

Finally, substituting (13) into (12), we have

εV = −P [K0(1− 6α/π)]−1 (P < 0). (14)

Since in terms of linear viscoelasticity, the three-dimensional governing equation for volume changes has the form
σii = 3Kεii = 3KεV , where σii = −3P , we can write K = −Pε−1

V or, for a medium containing cavitational hollows
of concentration α,

Ka(α) = −P [εV (α)]−1, P < 0. (15)

Then, substituting (14) into (15), for the modulus of volume elasticity of the medium loaded by pressures at which
this medium is deformed as an elastic body, we obtain

Ka(α) = (1− 6α/π)K0, K0 = Ka (α = 0), 0 6 α < α0. (16)

Here α0 is the volume concentration of cavitational hollows that corresponds to the maximum allowable radii R0

satisfying the condition R0 � 0.5l = 0.5n−1/3, which is necessary for the existence of solution (11).
Viscoelastoplastic Deformation in the Pressure Range |P̂ 0| < |P̂ | < |P̂ ∗|. In this case, a field of shear

stresses τ exceeding the yield point τ∗ forms in the vicinity of each cavitational hollow during deformation, and,
hence, divergent plastic flow develops, i.e., the cavities are expanded. Since the modulus of volume elasticity of
the medium is a quantitative characteristic of reversible volume changes, i.e., deviations from the equilibrium value
under the pressure applied, determination of the modulus makes sense only for the medium in the equilibrium
state. We assume that the dependence of the gas pressure in a cavitational hollow on its radius has the general
form P ′g = Pgz

−3k̄, where Pg is the pressure in the cavity in the equilibrium state, z = R′/R, and k̄ is the
polytropic exponent (unprimed variables correspond to the equilibrium state of the system and variables with
primes refer to the disturbed state). For liquid media with bubbles, Pv is always equal to the saturated vapor
pressure, i.e., P ′v = Pv = const, and for solid-plastic materials with pores, Pv = 0. Then, substituting the expression
Pg = P − Pv + 2γ/R+ (−1)m+14τ∗[ln (a/R)3 + 1− α(a/R)3]/3 = A from (4) into the equilibrium equation for the
cavity wall, for the disturbed pressure P ′, we obtain

−P ′
∣∣∣
α′'α

= (−1)m+14τ∗[ln (a′/R′)3 + 1− α(a′/R′)3]/3 + P∞ − Pv + 2γ/R′ −Az−3k̄. (17)

For extension, P ′ < 0, and for compression, P ′ > 0. However, the first term of the right side of (17) should have
the same sign as −P ′ because for solid-plastic media, the sign on the right side of the equation is determined by
the first term, whose absolute value is much larger than that of the other terms. With allowance for this, Eq. (17)
is written as

P ′
∣∣∣
α′'α

=
4
3
τ∗[ln (β−3z−3) + 1− αβ−3z−3] + (−1)m+1

(
P∞ − Pv +

2γ
Rz
−Az−3k̄

)
. (18)

Here we always have P ′ > 0 and loading characteristics are allowed for by the factor (−1)m+1 (m = 1 for extension
and m = 2 for compression), and, hence, (18) is equivalent to Eq. (17). From (18) we have

dP ′

dz

∣∣∣
z=1

= −
[
4τ∗(1− αβ−3)− (−1)m

(2γ
R
− 3k̄A

)]
. (19)

For the initial equilibrium state, the formula for the volume of a condensed medium containing cavities has the form
V 0 = V0 + V1 = V0 + 4πR3N/3, where V0 is the volume of the condensed component ignoring the volume of the
cavities V1 and N is the number of cavities in the volume V 0, which satisfies the condition α < α∗. For the state
corresponding to R = R′, this formula becomes V 0′ = V0 + V ′1 = V0 + 4π(R′)3N/3. From the last two expressions,
we obtain

dV 0 = dV0 + dV1 = dV0 + 12πR2N dR/3 = dV0 + 3V1 dz. (20)

Using the expression for the modulus of volume elasticity K = −V dP/dV , with allowance for (19) and (20), and
the fact that α = V1/V

0 and V0/V
0 = (V 0 − V1)/V 0 = 1− α, we have
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Ka = −V
0 dP

dV 0
= − V 0 dP

dV0 + 3V1 dz
= −

[
(1− α)(V0)−1 dV0

dP
+ 3α

dz

dP

]−1∣∣∣
z=1

=
[
(1− α)K−1

0 +
3α

4τ∗(1− αβ−3)− (−1)m(2γ/R)− 3k̄A

]−1

. (21)

For a bubbly liquid, with allowance for the smallness of τ∗ and assuming that gas expansion in a growing
bubble is an isothermal process (by virtue of the large heat capacity of liquids), i.e., assuming that k̄ = 1, Eq. (21)
reduces to the formula Ka = {(1− α)K−1

0 + (−1)m3α/[3(P + P∞ − Pv) + 4γ/R]}−1 derived in [10]. We note that
in liquids, bubbles can be in equilibrium only at P > 0, and, hence, Ka can be determined only at m = 2. Because
in solid-plastic media, pore growth to concentrations α > α∗ is impossible, the dependence Ka(α) in the range of
α∗ 6 α < 1 is valid only for cavitating liquids. This dependence was derived in [10]. With allowance for this and
formulas (16) and (21), the dependence of the modulus of volume elasticity of an EVPB on the cavity concentration
is written as

Ka =



(1− 6α/π)K0 for 0 < |P̂ | < |P̂ 0|, 0 6 α < α0,[
(1− α)K−1

0 +
3α

4τ∗(1− αβ−3)− (−1)m(2γR−1 − 3k̄A)

]−1

for |P̂ 0| < |P̂ | < |P̂ ∗|, 0 6 α < α∗,

ρ̃0C̃2
0 − (2γ/R0) 3

√√
2α0(1− α)α2/(9π) for |P̂ ∗| < |P̂ |, α∗ 6 α < 1.

(22)

Here ρ̃0 is the unperturbed density of the vapor-gas fill of a foamy cell and C̃0 is the speed of sound in the vapor–gas
fill.

The values of Ka(α) calculated for liquid media agree well with experimental data (see [10]). In the case of
solid-plastic media, the calculations by formula (22) [with allowance for 4τ∗(1− αβ−3)� |2γR−1| and k̄ = 0] were
compared with similar calculations by the formula for Ka of solid porous bodies derived in [19] by a different method.
The results obtained show the following: if we introduce the notation ω = Ka1/Ka2, where Ka1 is calculated by
formula (22) and Ka2, by formula (28) from [19], for a copper sample with micropores under loading by negative
pressures 0 < |P̂ | < |P̂ 0|, we obtain ω = 1 at α = 10−8, ω = 1.000 02 at α = 10−5, ω = 1.0019 at α = 10−3, and
ω = 1.019 at α = 10−2. When the sample is loaded by negative pressures |P̂ 0| < |P̂ | < |P̂ ∗|, we have the following:

— for χ = P/Y∗ = 0.7, ω = 0.999 97 at α = 10−8, ω = 0.9972 at α = 10−6, ω = 0.9722 at α = 10−5, and
ω = 0.78 at α = 10−4;

— for χ = 4, ω = 0.999 97 at α = 10−8, ω = 0.998 at α = 10−6, ω = 0.973 at α = 10−5, and ω = 0.785 at
α = 10−4;

— for χ = 7.5, ω = 1 at α = 10−8, ω = 1.002 at α = 10−6, ω = 1.011 at α = 10−5, and ω = 1.23 at
α = 10−4.

Thus, the difference in calculated values of Ka is significant only when the initial pore concentration is
high. For example, for a copper sample with χ = 4 and α = 10−3, formula (22) yields Ka = 0.28 · 1011 Pa, and
formula (28) derived in [19] yields Ka = 1.09 · 1011 Pa. As is noted above, the initial concentration of micropores in
solid-plastic nonporous materials does not exceed values of α0 = 10−8–10−6. However, the goal of the present work
is to examine the conditions for cavitation growth in condensed media where α increases by an order of magnitude,
i.e., does not exceed the value of 10−5.

It is known that all condensed media behave the same under volume extension: volume deformation gives
rise to viscous strength, which is characterized by volumetric (second) viscosity [12]. Therefore, the procedure of
constructing the dependence ζ1(α) for bubble liquid media described in detail in [16] is valid for any condensed
media including the modeled EVPB with cavitational microhollows. With allowance for this, the rate of energy
dissipation in a homogeneous medium that is rheologically equivalent to the medium studied (and has the same
volume V 0) is written as

D = V 0ζ1ε̇
2
V = D0 +Db, ε̇V = ε̇V0 + ε̇Vb , (23)

where D0 = V0ζ0ε̇
2
V0

is the energy-dissipation rate in the volume V0 of the medium at α = 0 and Db = 16πµ0RṘ
2N

is the rate of energy dissipation due to growth of cavitational hollows in the medium under study, i.e., in the volume
V 0. Assuming that Ka(α0) ' K0 and following [16], we have
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ε̇V0 = σ̇V0K
−1
0 , ε̇Vb = 3αṘR−1. (24)

Substituting (24) into (23) and rearranging the equation, we finally obtain

ζ1(α) =


ζ0(1− α)−1 for 0 < |P̂ | < |P̂ 0|,

ζ0(1− α)−1[1 + 3αṘR−1K0σ̇
−1
V0

]−2

+ 12µ0αṘ
2R−2(σ̇V0K

−1
0 + 3αṘR−1)−2 for |P̂ 0| < |P̂ | < |P̂ ∗|.

(25)

From (25) it follows that for elastic deformation and plastic yield at an early stage of extension or under
instantaneous loading, where De � 1 and σ̇V0R

−1 � 1, the volume viscosities coincide and are equal to ζ1 =
ζ0(1 − α)−1. In the subsequent stages of cavity growth, 3αK0Ṙ � Rσ̇V0 , σ̇V0K

−1
0 � 3αṘR−1, and ζ1 → 4µ0α

−1,
i.e., to the value of ζ1(α) in concentrated suspensions [16]. Since σ̇V0 = −Ṗ , ζ1(α) generally depends on the variation
of P with time. For example, if the loading dynamics has the form P (t) = P (0) exp (−t/t∗), where t∗ is the time
constant, and P (t) “ensures” satisfaction of the elasticity condition over fixed time, (25) reduces to the dependence
(18) from [16].

Thus, the constructed rheological functions Ka(α) and ζ1(α) completely defines the rheological equation of
an EVPB with cavitational hollows (10) for all modeled media.

5. The time of relaxation of volume tensile stresses and, hence, the time of relaxation of negative pressures
acting on a condensed medium are defined by the relation [12] T = ζK−1. Substituting the values of Ka and ζ1
from (22) and (25), respectively, into this relation, we obtain

T (α) =



T (α)[(1− α)(1− 6α/π)]−1 for 0 < |P̂ | < |P̂ 0|, α < α0,[ ζ0

(1− α)(1 + 3αK0ḃ/(bσ̇Vb))2
+

12µα
(3α+ bσ̇V0/(ḃK0))2

]
[(1− α)K−1

0 + (−1)m3αP−1
f ]

for |P̂ ∗| < |P̂ |, 0 6 α < α∗,

(26)

where Pf = 3(P + P∞ − Pv) + 4γ/R.
Relation (26) is valid for estimating the time of relaxation negative pressures at which the entire cell contain-

ing a microcavity is in one of the two possible homogeneous rheological states: elastic state or viscoplastic state. If
|P̂ 0| < |P̂ | < |P̂ ∗| and a < 0.5n−1/3, then the rheological state of the cell is inhomogeneous: in the layer R 6 r 6 a,
the medium is in the viscoplastic state, and in the layer a < r 6 0.5n−1/3, it is in the elastic state. In this case,
relation (26) is inapplicable, and T (α) is determined from the relation derived in [13]:

T (α) = t0 +
1

3Q(1− s)
ln

[
Bβ3

0

4

(
1 +

√
1 +

8(1 + ξ)2

B2

)]
(27)

(
B = (1− e−2)

[ π
3α
− 6α

π
(1 + ξ)2

]
− [(1 + ξ)2 − 2]e−2

)
.

Here t0 = t̂0h
−1, where t̂0 is defined by (8). Formula (27) is valid until the moment when the external boundary

of the viscoplastic zone a reaches the cell boundary, i.e., when a = 0.5n−1/3. We note that for a water sample
with cavitational nuclei at P 0 = −30 MPa, α0 = 10−4, and R0 = 10−5 cm, the negative-pressure relaxation time
determined in [24] within the Iordanskii–Kogarko model is equal to 0.63 · 10−8 sec, while according to (26) for the
same conditions, it is equal to T = 3 · 10−8 sec.

Thus, a cavitating viscoelastoplastic body can be used as a generalized rheological model of cavitation
development in all liquid, liquid-plastic, and solid-plastic media. In this case, the region of applicability of the
generalized rheological model proposed is defined by inequality (9).
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